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Studies of various stabilization methods of a rigid body with res ect to 
specially oriented axes are at present of great interest [land 4 . P 

Among them the method whic,h uses the inertial pendulum masses possesses 
a number of important technical advantages [4]. 

It is of interest to consider the application of this method to the prob- 
lem of constructing an optimum law of stabilization of rotations of a rigid 
body about a fixed point c5 and 83. 

1. Btat@mWht of tha problrm. Let us consider a free rigid body fixed at 
the center of its mass. Let 0.X1XaX3 be the stationary coordinate system, 
Oxlx,x~ be the coordinate system attached to the body and oriented along the 
principal central axes of inertia (Fig.1.). 

The orientation of the system 0x1X& with 

L) 

% 

respect to 0X,X,X3 can be determined for example 
by the Eulerian angles. We shall assume that our 
body contains flywheels whose axes coincide with 
the XIXpXa axes. 

By definition such a system is called a gyrostat. 
The equations of motion of a gyrostat from the 

xl P91. 
rinciple of angular momentum were given by Volterra 

w They have the form 

x3 c*p;+ J&l + (Cs- CJP,P, + Hsp3 - H3P3 = 0 (123) 

Fig. 1 Hi = Jioi (i = 1, 2,3) (1.1) 

Here C,, Cz , CI are the principal central moments of lnertla,of the 
gyrostat (assuming that the flywheels do not rotate); 
of inertia of the flywheels; 

J, , Je, J3 are moments 
01, cJ9, (JJg are the angular velocities of the 

flywheels with respect to the body; pl, pa, p3 are the x1, x1, x3 compo- 
nents of the angular velocity p of the body. 

The symbol (1, 2, 3) means that the two following equations are obtained 
from (1.1) by cyclic permutations. 

The equations of motion of flywheels are 

Ji (cot’ + pi’) = - CJi (i = 1, 2, 3) (1 2 3) (1.2) 

Here U, are moments of the motors which drive the flywheels. Let 
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Ai= Ci-Ji (i = 1, 2, 3) 

From Equations(l.1) and (1.2) we find 

Al& = u, + GP, + H,)P~ - GP, + HJ ~2 (123) (1.3) 

Equations (1.3) are the ones which we shall investigate. Here U, are 
considered as moments controlling the body. 

Let us turn to Eauations (1.2) and (1.3). We shall introduce the new 
variables 

‘i=AiPi+ Ji(o,+pi) (i=l,2,3) (1.4) 

Then the combined equations will take the form 

P; = A-’ bps - wp + VI) (f 23) (1.5) 

2; = zap3 - z3p2 (12 3) W) 

Equations (1.6) permit the first integral 

Q2 + 222 + zs* = c, c = const (l.7) 

It follows that if z1 (0) + zs (0) + zs (0) < 00, then the functions z!l (t = 1, 
2, 3) are always bounded. 

Existence of the integral shows, that in our case it is impossible, in 
general, to reduce to zero all the variables p,, UI, (f, = 1, 2, 3). It 
would be possible only in a very particular case when the motion takes place 
in the subspace of the initial states 

zio = 0 (i = 1, 2,3) 

Consequently, the system (1.51, (1.6) cannot be stabilized wit,> respect 
to all the variables (t = 1, 2, 3). This property does not negate 
the conditions of stabf)iit;‘of the system described in [lo]. 

Thus, we shall attempt to investigate the problem of stabilization of 
rotation of the rigid body alone, with any arbitrary functions 2, (t = 1, 
2, 3) being bounded and satisfying the conditions (1.6), (1.7). 

We shall stabilize the rotations of a rigid body about a fixed point by 
means of flywheels. That such stabilization is possible follows from the 
angular momentum theorem, which says that every directional motion of the 
flywheels causes a directional motion of the rigid body. 

Every flywheel is driven by an electric motor, consequently, the control 
of the body is reduced to the control of the voltage transmitted to the 
driving motors. 

If U, = 0 ( t = 1, 2, 3)) then Equations (1.3) have an obvious solution 

pl* = pa* = p3* = 0 

which must be stabilized. 

As to the solution (l.q), Equations (1.5) can be treated as equations of 
a perturbed motion, valid when the arbitrary p, (t = 1, 2, 3) are bounded. 

Equations (1.5) shall be regarded a the initial equations of the control- 
led object which are valid at any zl St = 1, 2, 3) satisfying the condition 
(1.6), (1.7). 

We shall treat Equations (1.5) as equations with variable coefficients. 
We shall assume that: 

a) the equations of a perturbed motion (1.5) of the controlled object 
are given, 

b) the equations (1.5) determine a multitude of perturbed motions of the 
object occurring in a certain ne-ghborhood 

~2 + PJ + ~2 < -4, A = const>O (1.10) 

of the state (1.9) 

c) the optimizing functional is 
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I (1.14) 
0 

in which W is a sign-definite positive function of the form 

W=f: (a&s+ Ur') (s>O) (1.12) 
i=l 

of the variables p,, U, , where a is a weight constant. 

Every control U, of piecewise continuous class at which I < m will be 
called permissible. 

Problem . Find control 

vi= Ui(Pl t) (i =i, 2, 3) (1.13) 

at which Equations (1.5) are satisfied (at any zI (t = 1, 2, 3) satisfying 
conditions (1.6), (l.?), and at which the Functional (1.11) would have a 
minimum for all motions occurring in the neighborhood of (1.10). 

2. Solution of thr problem. In order to solve the problem we shall use 
methods of dynamic programing. We shall introduce the Following notation 

00 

Y (P(t), t) = minU 
s 

Wdt, u = {Ulr UP, US} (2-i) 

t 

Let us write down the equation of Bellman. It can be expressed in the 
following form _ 

from which we Find the optimum control 

u -_;/pa’p i - aai (i = 1, 2,3) (2.3) 

It is obvious that in order to solve the problem we must Find First the 
function 4 which we call the generating function. 
following eq:ation 

It should satisfy the 

and also the condition 

The equation of Bellman can be satisfied if we set 

y=p$ /Ilip;, P=a (i=i,2,3) 

(2.4) 

(2.5) 

i=l 

It is seen that in this case the Function f which is the solution of 
our problem and expresses the control law, does not depend on t explicitly. 

Consequently, the law of stabilization is determined from Formulas 

u,=- PPr. p=)/;; (2.7) 

The closed system has the Form 
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&1'= zzp2--3p2- PPI (133) (2.8) 

3. -or of I oloBOd ryrtom. 1. Asymptotic stability. The state 
(1.9) ;.s asymptotically stable at any 2, satisfying Equations (1.6),(1.7). 
Indeed, the function ti is sign-definite ,‘positive with respect to p, 
~4.;,1~,2, 3), and its total derivative along the traJectories of the system 

\y’=__W (3.1) 

Consequently, the conditions of the second Liapunov theorem on asymptotic 
stability are satisfied. 

On the strength of the asymptotic stability of the state (1.9) (&t any 
I, (1 = 1, 2, 3), satisfying the conditions (1.6), (1.7)),the function C 
satisfies the condition (2.5) and the integral (2.1) is bounded. 

2. Rate of damping of I . We have 

Y-=-2& pt (i = 1, 2, 3) (3.2) 
i=l 

a) Let A,= A,= A,= A , Then we have the integral 

fi pI”=-j pi;exp(_ ?_gct) 
I=1 i=l 

(3.3) 

b) In the general case A,< A,< A, , hence 

3 3 

PAi x Pio2exP ( - 2 JG ?._$Z t)<Y<pAsx Pio2exP(-T $) (3.4) 
i=l i-l 

The inequality (.3.4) permits to obtain two-sided estimates on the rate 
of damping for each velocity component of the rigid body. 

3. The first integral. Equations (1.6) have the first integral 

zl” + zss + zss = const (3.5) 

Since pi (m) = 0 (i = 1, 2, 3), we have 

(& ) Jiai = const 
03 

Existence of the limiting value of the integral confirms the conclusion 
that motions of flywheels are not controllable. 

t Iced 

Fig. 2 Fig. 3 



4. Dynamics. Dynamics of a perturbed motion, and especially the rate of 
its damping can be investig-ted by integrating Equations (2.8) by the method 
of successive approximations. 

The first approximation has the form 

p. ‘p. ,-A$ 
Ai + Vi 

11 10 ’ Oil = oio + - 
li 

pio(l - e-+l) (i = 1, 2, 3) (3.7) 

All the following approximations are found from Formulas 

Pij’ = - &Pij + fi, j-1 (t)t @ij’ = thi + CPJ Pij - fij-i tt) (i= i, 2,3) (3.8) 

Here 

P P 
& = Ai * Oi = Ji 1 fl, j-1 tt) = tJs - J3) Pz, j-1 Ps, j-1 + J@z, hl Pa, j-l- JaO,, j-1 P*, j-f 

(1 2 3) (3.9) 

Agreement of these approximations can be proved. In a number of concrete 
cases we can use only the first two approximations. 

For the numerical values used in [ill 

Al= 40 kgm set', J,- 0.4 kgm SeC2, wIo= 0 

A,= A~= 850 kgm se?, .r2= Jo- 8.5 am set', plo= 0.1 degree/set 

(t = 1, 2, 3) 

the intermediate processes at different values of are shown in Figo. 2 
and 3. All the approximations satisfy the condition 

Pi (=I =O 

When calculating the multipliers A, +Cpi (i = 1,2,3) the quantities XI 
(t = 1, 2, 3) were neglected being of second order of smallness. 

4. I~o&omlo aontrol. An important application in the case when the 
rigid body is acted upon by a constant perturbing moment whose x1, x2, X3 
components are cl, fz, c3 , respectively. 

Let us state the problem; 
an isodermic effect, 

find the equation of an optimum control having 
which means that the action of the perturbing moment is 

compensated only by deviations of the controlling device. These deviations 
are determined from Formulas 

ui* = - si* (i= 1, 2, 3) (4.1) 

Consequently, the equations of motion of the body, when the perturbing 
moments are taken into account will have the same form as (1.5) if U, is 
implied as 

lYi- U,'= Ui (i = 1. 2, 3) (4.2) 

With respect to these equations the problem of analytic design is formu- 
lated in the usual way if in the functional (1.11) the values 
difference (4.2). Its solution has obviously the form 

II, imply the 

ui= --pi (i = 1, 2. 3) (4.3) 

Similarly to 12 and 13 the control equations are combined, that is they 
contain both deviation signal and loading signal. 

5. Optimum rtrblllr~tlon in a flnltr tinw lntoxval. We shall consider 
the problem of analytic design, 
rigid body from the functional 

estimating the degree of stabilization of a 

I(+.j &v& + koP (T), o’(T)=i: Pi'(T) 

i=l 

(5.1) 

Here k and b are nonnegative constants. The multiplier I?'* helps to 
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speed up the damping of the intermediate processes. 

If we assume now that the generating function is 

T 

Y (p (t), t) = min,, 
(5 

e%‘dt + km2 (T) 

t 

(5.2) 

we obtain the following Bellman equation 

aY = esta 
i 

ay 
-at 

pi2 + A1-'(zzpa - qJ2) - + 

i=l 
ah 

+ Aa-’ (zap1 - ZlPd 2 + As-l (ZlP2 - zzpd g. - $ i (Ai_1 2x)2 (5.3) 
r=1 

We shall show one particular solution of the problem. Let 

Al=A,=A,=AI 

Then Equation (5.3) can be satisfied by setting 

Y = p (t)e”‘Al i pi2 (i = 1, 2, 3) 
i=l 

Here $ is a smooth function satisfying the Riccati equation 

P * = Al-l (p2 - a) - 6p 

and assuming only positive values such that 

AlesTp(T)= k, p (2') = kAl-lemST 

We shall investigate its solution setting t =T-r. We have 

Pa,1 = liz~16 k_ v/(‘/a-my + a 

The equation has the following solution 

p= pz(k* -~~1)-~~l(k*-pa)exp((~a-~pl)/-4)~ 
k* - p1 - (k* - ~2) exp ((~2 - PZ) / AI) z 

(5.4) 

(5.5) 

(5 6) 

(5.7) 

This solution corresponds to the case when the constants %>02,T'>o 
are such that the denominator of the fraction is positive. 

The control U, is determined from Formulas (2.7) and has the form 

ui=-P (t) Pi (5.8) 

where p(t) is the solution (5.7). 

Let us consider the case when b-0. Equation (5.3) can be satisfied 
by taking 

Y = p 0) -4, (P? + Ps2 + P2) (5.9) 

Here p(t) is a smooth function satisfying the Riccati equation 

p’ = A,-1 (pa - a) (5.10) 

The solution of Equation (5.10) is found from Formula (5.7) where Pz* cl 
are determined from the conditions pa- a = 0 p = f va 

(5.71, 
. The control VI 

has the form (5.8) where is the solution 
determined from Formula (5!6). 

in which pzJ PI are 
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